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Calculation of the higher order averaging equations of a non-linear oscillator
is very tedious using the classical averaging method. This is also true for higher
order normal forms. This paper presents an alternative method, which is a
combination of the method of normal form and the classical averaging method.
A simple and efficient program is given to calculate the higher order averaging
equations by using the symbolic computer algebra system Mathematica.
Furthermore, the program can be used to calculate the higher order coefficients
of normal form. Four examples are given and compare well with the existing
results
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1. INTRODUCTION

The normal form of vector fields (or Poincaré normal form, standard form) is a
simplified analytical expression for a non-linear oscillator [1]. Such a simplified
expression is obtained by using nearly identical non-linear transformations of
variables. By introducing non-linear transformations of variables to simplify the
analytical expression, the qualitative behaviour of the oscillator can be efficiently
described. The qualitative geometric bifurcation structure can be obtained for
flows through the analysis of dynamical character of normal forms.

The averaging method, originally due to Krylov and Bogoliubov, is particularly
useful for a weakly non-linear oscillator by utilizing small perturbations of the
corresponding linear oscillator. This method is one of the most important methods
of studying the bifurcation problems at present. It has been proved [2, 3] that the
averaging method is equivalent to the normal form method. So the problems of
calculating higher order averaging equation are equivalent to the problems of
calculating higher order coefficients of normal form.

There are three basic methods [1] to calculate the coefficients of normal form:
matrix representation method, adjoint operator method and a method based on
representation theory of sl(2, R) [4]. Though the first method makes the calculation
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of the coefficients of normal form, or higher order averaging equations, in a
routine manner, it is still very complicated to program. In the last two methods,
one needs a higher level of mathematical skills. There are classical methods [5, 6]
which obtain the normal form by elimination of the secular term one step at a time
and which are not suitable for automatic computation.

The tedious computations required here are implemented by using the computer
algebra system—Mathematica [7]. A short and efficient program is given to
calculate the higher order averaging equations. It takes two minutes to calculate
the second order averaging equation for a general single degree freedom non-linear
oscillator and four minutes to calculate the fourth order by this method in a
Pentium 133 Personal Computer with 16M memory. The user is required to type
in the equations only.

2. NORMAL FORM

Consider the non-linear ordinary differential equations [5, 8],

u̇= g(u), g$Cr(Rn), u$Rn, (1)

where g is an n-vector function of u which is an n-vector function of time t.
Function g is differentiable up to an integer order r. A dot denotes differentiation
with respect to time t. When equation (1) has a fixed point at u= u0 i.e., g(u0)=0,
a few linear transformations are performed to simplify equation (1). By the
variable change v=(u− u0) one can eliminate the constant terms and shift the
fixed point to the origin under which equation (1) becomes

v̇= g(v+ u0)=H(v)=H1v+H2(v),

where H(v) is at least linear in v which is readily split into the linear part H1 and
the non-linear part H2. The linear part H1 =DvH(v=0), which is the Jacobian
of H(v) evaluated at v=0, where Dv is a differential operator with respect to v,
and the non-linear part H2 = (H(v)−H1v) is at least quadratic in v. By
transforming H1 into Jordan canonical form by the canonical matrix Q, i.e.,
v=Qx, where Q is the matrix consisting of all eigenvectors of H1 if H1 is
non-defective and of all generalised (principal) vectors if H1 is defective, one
obtains

ẋ= Jx+ f(x)+ Jx+ f2(x)+ · · · + fr (x)+O(=x=r+1), x$Rn, (2)

where J is the Jordan canonical form J=Q−1 H1Tv, f(x)=Q−1 H2(Qx) and
fk (x)$Hk

n , the linear space of all n vector-valued homogenous polynomials in n
variables x, k=2, . . . , r, or just simply fk (x) is the kth order homogeneous
polynomial of x.

To transform equation (2) into its normal form, a series of nearly identity
nonlinear co-ordinate transformations of the form [9–11] is introduced,

x= y+Pk (y), Pk (y)$Hk
n , kE 2, (3)
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where Pk (x) is an unknown kth order homogeneous polynomial of x to be
determined. The system of equation (2) after the change of variables is

ẋ=(I+DyPk (y))ẏ

= J(y+Pk (y))+ f2(y+Pk (y))+ · · · + fr (y+Pk (y))+O(=y=k+1), y$Rn,

where I denotes the n× n identity matrix and the term (I+DyPk (y)) is invertible
for small y so that (I+DyPk (y))−1 = I−DyPk (y)+O(=y=2). Define the adjoint
operator, which is a kth order homogeneous polynomial

adk
J Pk (y)=DyPk (y)Jy− JPk (y), (4)

where DyPk (y) is the Jacobian matrix of Pk (y). Equation (2) becomes

ẏ= Jy+ f2(y)+ · · · fk−1(y)+ fk (y)− (DyPk (y)Jy− JPk (y))+O(=y=k+1)

= Jy+ f2(y)+ · · · fk−1(y)+ fk (y)−adk
J Pk (y)+O(=y=k+1) (5)

One notes that fj (2E jE k) are unchanged under transformation (3). If one can
find a polynomial Pk (y) so that fk (y)−adk

J Pk (y)=0, then the kth order
homogeneous polynomial terms in ẏ are completely eliminated. It is not always
the case, in particular, when the kth order homogeneous polynomial contains
resonance terms, i.e., the matrix representation of adk

J is rank deficient. The latter
is dealt with below.

Let Im adk
J be the image of adk

J which is rank deficient and Gk be any complement
to Im adk

J to span the space of Hk
n : Hk

n =Im adk
A$Gk. Assume that

fk (y)= vk (y)+ f0
k (y), where vk (y)$Im adk

A , f0
k (y)$Gk. If one chooses Pk (y) such that

adk
J Pk (y)= vk (y), then equation (5) becomes

ẏ=Ay+ f2(y)+ · · · fk−1(y)+ f0
k (y)+O(=y=k+1). (6)

Thus by induction one has the following Theorem [12, 13].

Theorem 1. Let ẋ= f(x) be a Cr system of differential equations with f(0)=0
and Df(0)= J. Let Gk be complementary subspaces to Im adk

J in Hk
n for

k=2, . . . , r, then Hk
n =Im adk

J +Gk. There exists a series of near identity
transformations

x= y+Pk (y), Pk (y)$Hk
n , k=2, . . . r,

such that the system of equation (2) becomes

ẏ= Jy+ f 0
2(y)+ · · · + f0

r (y)+O(=y=r+1), (7)

where f0
k (y)$Gk, k=2, . . . , r.

It is clear that equation (7) is the simplest form up to order r among all
equivalent systems of equation (2) with respect to smooth transformations. If adk

J

has full rank for k=2, 3, . . . , r, then all f0
k are identically zero. f0

k is non-zero only
when adk

J is rank deficient.
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3. LIE GROUP DEFINITION OF NORMAL FORM

In general, the normal form of an ordinary differential equation satisfies the
following homology equation:

adk
J f 0

k (y)=0, k=2, . . . , r. (8)

References [3, 13] have given another one parameter Lie group definition of
normal form which is equivalent to equations (8). Choose the one parameter Lie
group

G= {etJ, t$R}, (9)

Then the normal form f0
k (y) has the symmetry about G, that is

f0
k (etJy)= etJf0

k (y), [t$R and eTJ = I, (10)

where I is an identity matrix and T is a primitive period and is proven below.

(1/1t)[e−tJf0(etJx)]=−J e−tJf0(etJx)+ e−tJDf0(etJx)JtJx)

= e−tJ[Jf0(etJx)−Df0(etJx)JtJx)]=−e−tJ adk
J f0(etJx)=0,

where equation (8) has been employed with y=etJx. Obviously, e−tJf0(etJx)= c
which is independent of t. Let t=0, c= f0(x) and e−tJf0(etJx)= f0(x). Therefore,
equation (10) is proved.

Equation (8) is an automonous definition of normal form f0(y) and equation (10)
is a non-automonous definition of normal form f0(etJx) where time t is explicitly
involved.

4. AVERAGING METHOD

As with normal form transformations, averaging uses a near identity
co-ordinate transformation to simplify a given system of ordinary differential
equations. Applying the classical normal form transformation to autonomous
systems but applying averaging to non-autonomous systems, the co-ordinate
transformation is chosen to transform the non-autonomous system into an
autonomous one called the averaged system through integrating the time variable.

With the method of averaging, non-autonomous differential equations of the
type

ẋ= eh(x, t, e), x$Rp, =e=�1

are studied and analyzed, where h(x, t, e) is a T-periodic vector field. First a
non-autonomous T-periodic transformation of the form

x= j+ eu1(j, t)+ e2u2(j, t)+ · · · + ekuk (j, t)

is applied resulting in an averaged equation of which all terms up to O(ek) are
autonomous

j� = eh	 1(j)+ e2h	 2(j)+ · · · + ekh	 k (j)+ ek+1R(j, t, e).
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Next, the non-autonomous part is truncated and the remaining equation is
analyzed. By using an asymptotic theory, one may show that the solution of the
final equation can be used as approximation for the original equation.

5. PERIOD AVERAGED NORMAL FORMS

Suppose J$Rn× n, G= {etJ, t$R}, is defined by equation (9), and T is defined by
equation (10). Consider the following non-linear ordinary differential equations

ẋ= Jx+ ef(x, e), x$VWRn, (11)

where 0Q =e=�1, f$Cr+1 and f(0, e)=0. V is a domain which contains the origin
and invariant under G, and Gx$V for any x$V. By making the transformation

x=etJy, ẋ= J etJy+etJẏ (12)

and substituting into equation (11), gives

etJẏ= ef(etJy, e).

Let

g(y, t, e)= e−tJf(etJy, e), (13)

then equation (11) becomes

ẏ= e e−tJf(etJy, e)= eg(y, t, e) (14)

Equation (14) is explicitly dependent on time while the original equation (11) is
not. Equation (14) is usually solved by the averaging method and equation (11)
by normal form method. The period averaged normal forms of equation (14) are
constructed by means of Theorem 2.

Theorem 2. The change of variable

y= z+ s
m

l=1

elhl (z, t) (15)

transforms equation (14) by the averaging method to the following normal form
up to order m

z� = s
m

k=1

ekf0
k (z)+O(em+1) (16)

where the transformations hk (z, t) are determined from

hk (z, t)=
1
T g

T

0

t[gk (z, t+ t)− f0
k ] dt (17)
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and the normal forms f0
k (z) are given by

f0
k (z)=

1
T g

T

0

gk (z, t) dt (18)

and the expansion

gk (z, t)=
1

(k−1)!
1k−1

1ek−1 g0z+ s
k−1

l=1

elhl (z, t), t, e1be=0

− s
k−1

l=1

h'k− l (z, t)f0
l (z), (19)

in which a prime denotes differentiation with respect to z, and

f0
k $Cm+1− k(V, Rm), hk $Cm+1− k(V×R, Rm), f0

k (0)=0,

hk (0, t)=0, hk (x, t)= hk (x, t+T), [x$V, t$R (20)

here gk (z, t), hk (z, t) and f0
k (z) satisfy the following time symmetries

hk (etJx, t)= esJhk (x, s+ t),[s, t$R, (21)

f0
k (esJx)= esJf0

k (x), [s$R, e−tJgk (etJz, t)= gk (z, t+ t) (22, 23)

A proof of Theorem 2 is given in Appendix A. The time variable disappears from
equations (15) and (16) as a result of the averaging process. Theorem 2 suggests
a convenient way to find the normal form. It eliminates the determination of the
complement to Im adk

J in the matrix representation and the adjoint operator
methods [10, 11]. The theorem unifies the formulation of averaging and normal
form for periodic oscillation.

6. THE MATHEMATICA PROGRAM

A concise program in Mathematica language is given in Appendix B for a set
of two first order ordinary differential equations whose Jordan matrix is

v$ 0
−1

1
0%.

The first three lines are the parameters and functions input by the user. The first
line k= the highest order of e required. The second line w=v which is the linear
frequency. The third line f= {f1, f2} where f1 and f2 are the two expressions of
the two dimensional vector function f in equation (11). After running, the result
is saved in the last line of the programme to a file with the filename ‘‘olf’’ in the
current directory. The first part of olf is ṙ, and the second part of olf is u� . Solutions
of four examples are produced in the following section by this programme.

7. EXAMPLES

Four examples whose higher normal form or averaged solutions are obtained
by the above programme are considered. The initial conditions are of no concern
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because interest is in the limit cycles obtained from the steady state ṙ=0. The
actual value of the small parameter e is not needed before the analysis.

Example 1. Consider the following ordinary differential equations as the first
example:

ẍ+ x= e[x2 + eẋ(1− ẋ2/3)],

or

$ẋ1

ẋ2%=$ 0
−1

1
0%$x1

x2%+ e$ 0
x2

1 + ex2(1− x2
2 /3)%, eq 0 is small. (24)

To calculate the fourth order averaging equations of equation (24), take k=4,
w=1 and f= x2

1 + ex2(1− x2
2 /3) (i.e., f= {0, x1g2+ep x2(1−x2g2/3)}) in the

programme. The fourth order averaging equations are

z� = e2f0(z, e)+O(e6), (25)

where

f0(z, e)=$z1

z2

z2

−z1%$ (4− r2)/8− (8−5r2)r2e2/144
−5r2/12− (864−432r2 +3221r4)e2/6912%,

r2 = z2
1 + z2

2 .

In order to translate equation (25) into polar co-ordinate form, let z1 = r cos u,
z2 = r sin u, then

$ṙu� %=$ cos u

−sin u/r
sin u

cos u/r%$z� 1z� 2%
= e2$ (4− r2)r/8− (8−5r2)r3e2/144

5r2/12+ (864−432r2 +3221r4)e2/6912%+O(e6)

The result obtained by this program is the same as the results in reference [2].
Example 2. Consider the Duffing oscillator with no damping term:

ẍ+v2
1x= cx3e2. (26)

Let x1 = x, ẋ1 =−v1x2, and substitute these transformations into equation (26),

$ẋ1

ẋ2%=$ 0
v1

−v1

0 %$x1

x2%+ e$ 0
−(c/v1)x3

1e%.
By taking k=6, w=w1 and f=−(c/v1)x3

1e (i.e., f= {0, −c/w1 x1g3 ep}) in the
program, the sixth order averaging equations are

z� = e2f0(z, e)+O(e8), (27)
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where

f0(z, e)=$z1

z2

z2

−z1%& 0
3cr2

8v1
−

51c2r4

256v3
1
e2 +

1419c3r6

8192v5
1

e4',
r2 = z2

1 + z2
2

In order to translate the equation into polar co-ordinate form, let z1 = r cos u,
z2 = n sin u, then

$ṙu� %=$ cos u

−sin u/r
sin u

cos u/r%$z� 1z� 2%
= e2& 0

−
3cr2

8v1
+

51c2r4

256v3
1
e2 −

1419c3r6

8192v5
1

e4'+O(e8).

The fourth order result obtained by this program is the same as the result in
reference [8].

Example 3. Consider the Van der Pol oscillator with no damping term:

ẍ+ e(ex2 − c)ẋ+ x=0. (28)

Let x1 = x, ẋ1 = x2, and substitute these transformations into equation (28),

$ẋ1

ẋ2%=$ 0
−1

1
0%$x1

x2%+ e$ 0
−(ex2

1 − c)x2%. (29)

By taking k=4, w=1 and f=−(ex2
1 − c)x2 (i.e., f= {0, −(ep x1g2−c)x2}) in

the program, the fourth order averaging equations are

z� = ef0(z, e)+O(e5)

where

f0(z, e)=$z1

z2

z2

−z1%$ c/2− r2e/8+ c2(4c−3r2)e3/128
−c2/8+3cr2e2/16− (2c4 +11r4)e3/256%,

r2 = z2
1 + z2

2 .

In order to translate the equation into polar co-ordinate form, let z1 = r cos u,
z2 = r sin u, then

$ṙu� %=$ cos u

−sin u/r
sin u

cos u/r%$z� 1z� 2%
= e$ cr/2− r3e/8+ c2r(4c−3r2)e3/128

c2/8−3cr2e2/16+ (2c4 +11r4)e3/256%+O(e5)
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For steady state, ṙ= er[c/2− r2e/8+ c2(4c−3r2)e3/128]=0, one can always find
a relation between c and e to determine the non-trivial solution for r for limit
cycles. For example, up to O(e4), 4c− r2e=0, or r=2zc/e, which is possible
when both c and e are greater than zero. Up to O(e5) c/2− r2e/8+ c2(4c−3r2)e3/
128=0, or r2 = (64c+4c3e3)/(16e−3c2e3), so long as 16q 3c2e2, the limit cycle
exists.

Example 4. Consider the following equation which was requested by one of the
reviewers.

ẍ+ eaẋ+ x= ebx2 + ecẋ3 (30)

where a, b, c are parameters and the linear natural frequency has been normalized
to unity. Equation (30) is equivalent to

$ẋ1

ẋ2%=$ 0
−1

1
0%$x1

x2%+ e$ 0
−ax2 + bx2

1 + cx3
2%. (31)

Let k=4, for the fourth order solution, and f= e(−ax2 + bx2
1 + cx3

2 ), then one
has the fourth order averaged equation

$ṙu� %=$ cos u

−sin u/r
sin u

cos u/r%$z� 1z� 2%
=$ e2r(3cr2/8− a/2)

e4(−a2/8+ r2(3ac/16−5b2/12)−27c2r4/256)%+O(e5).

For steady state, ṙ= e2r(3cr2/8− a/2)=0, one has the limit cycle r2 =4a/3c. It
is interesting to note that the parameter b has no contribution to the limit cycle.

8. CONCLUSION

A combined method of normal form and averaging which takes the advantages
of the both methods has been considered. The simplicity of the method enables
one to develop a short program to find the higher order averaged equations or
normal forms. Four examples have been given for comparison with existing
results.
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APPENDIX A

Proof of Theorem 2. Theorem 2 is proved in three steps. In the first step, it is
proved that equations (20) are indeed the conditions for the transformations hk

and the normal forms f0
k . In the second step, the relation between g and gk is given

so that z� =am
k=1e

k[−h� k + gk ]+O(em+1). The notion O(em+1) will be omitted below.
Finally, it is proved that f0

k =−h� k + gk and f0
k , hk and gk satisfy the symmetry

relations (21)–(23).
Step 1. Putting y=0 in equation (10) gives f0

k (0)=etJf0
k (0). Since etJ is not

always zero, f0
k (0)=0. Putting y=0 in equation (15) gives 0=0+am

l=1e
lhl(0, t),

therefore hl(0, t)=0. Because hk is T-periodic, equations (20) are indeed the
conditions for the transformations hk and the normal forms f0

k .
Step 2. From equation (15), y= z+am

l=1e
lhl (z, t). After differentiation with

respect to time, one has from equation (14), ẏ= z� +am
l=1e

l[h'l (z, t)z� + h� l ] =
eg(y, t, e). Putting z� = eg(y, t, e)−am

l=1e
l[h'l z� + h� l ]=aek[gk − h� k], then, one

obtains the relation (19) between g and gk .
Step 3. The time symmetry conditions (21) to (23) are proved by mathematical

induction. When k=1, from definitions (13) and (19), g1(z, t)= g(z, t, 0) =
e−tJf(etJz, 0), one has g1(z, t+ s)= e−sJ[e−tJf(etJ esJz, 0)]= e−sJg1(esJz, t), for equation
(23). Also, e−tJf0

1(etJz)= (1/T)fT
0 g1(z, t+ t) dt=(1/T)ft+T

t g1(z, s) ds= f0
1(z), for

equation (22). Therefore,

h� 1(z, t)=
1
T g

T

0

t
1

1t
[g1(z, t+ t)− f0

1(z)] dt

=
1
T g

T

0

t
1

1t
[g1(z, t+ t)− f0

1(z)] dt
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= g1(z, t)− f0
1(z)

e−tJh� 1(etJz, s)= e−tJg1(etJz, s)− e−tJf0
1(etJz)

= g1(z, t+ s)− f0
1(z)= h� 1(z, s+ t)

and equation (21) for k=1 is correct.
Assume equations (21)–(23) are correct for lQ k. Then replace z by etJz in

equation (19) and premultiply the equation by e−tJ, it can be proven that equation
(23) is valid for l= k. Hence, one can prove that

e−tJf0
k (etJz)=

1
T g

T

0

gk (z, t+ t) dt=
1
T g

t+T

t

gk (z, s) ds= f0
k (z),

h� k (z, t)= gk (z, t)− f0
k (z) and e−tJh� k (etJz, s)= h� k (z, s+ t)

similarly as for the case l=1. q

APPENDIX B: CALCULATING PROGRAM IN MATHEMATICA LANGUAGE

k=the order of the high order averaging equation, w=natural frequency of the
non-linear oscillator, f= {0, the nonlinear function}.

y= {y1,y2}
eta= {{Cos[w t],Sin[w t]},{−Sin[w t],Cos[w t]}}

x=eta.y
x1=x[[1]]
x2=x[[2]]

enta=Simplify[Inverse[eta]]
g=enta.f�og
ff=Table[0,{k},{2}]

gg=Table[0,{k},{2}]
hh=Table[0,{k},{2}]
dh=Table[0,{k},{2},{2}]
dhf= {0,0}

lf= {0,0}
gg[[1]]=g/.ep−q 0�og1

tt=2 Pi/w
fit= {{Cos[ct],Sin[ct]},{−Sin[ct]/r,Cos[ct]/r}}

ff[[1]]=1/tt Integrate[gg[[1]],{t, 0, tt}];
lf=Simplify[Expand[fit.ff[[1]]/.{y1 −qr Cos[ct],y2−qr Sin[ct]}]];

Do[
yy1=y1;
yy2=y2;

hh[[i−1]]=1/tt Integrate[tao(gg[[i −1]]−ff[[i−1]])/.t−q(t+ tao),{tao,0,tt}];
dh[[i−1]] =Outer[D,hh[[i−1]],{y1,y2}];

Do[yy1=yy1+epgj hh[[j,1]],{j,1,i−1}];
Do[yy2=yy2+epgj hh[[j,2]],{j,1,i−1}];
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Do[dhf=dhf+dh[[i− j]].ff[[j]],{j,1,i−1}];
gg[[i]]= (1/(i−1)!D[g/.{y1−qyy1,y2−qyy2},{ep,i−1}]/.ep−q0)

−dhf;
ff[[i]]=1/tt Integrate[gg[[i]],{t,0,tt}];

lf= lf+epg(i−1) Simplify[Expand[fit.ff[[i]]/
.{y1−qr Cos[ct], y2−qr Sin[ct]}]],

{i,2,k}]
ep lf�olf


